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Abstract

The objective of dynamical system learning tasks is to forecast the future behavior of

a system by leveraging observed data. However, such systems can sometimes

exhibit rigidity due to significant variations in component parameters or the

presence of slow and fast variables, leading to challenges in learning. To overcome

this limitation, we propose a multiscale differential‐algebraic neural network

(MDANN) method that utilizes Lagrangian mechanics and incorporates multiscale

information for dynamical system learning. The MDANN method consists of two

main components: the Lagrangian mechanics module and the multiscale module. The

Lagrangian mechanics module embeds the system in Cartesian coordinates, adopts a

differential‐algebraic equation format, and uses Lagrange multipliers to impose

constraints explicitly, simplifying the learning problem. The multiscale module

converts high‐frequency components into low‐frequency components using radial

scaling to learn subprocesses with large differences in velocity. Experimental results

demonstrate that the proposed MDANN method effectively improves the learning

of dynamical systems under rigid conditions.

K E YWORD S
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1 | INTRODUCTION

The objective of dynamical system learning tasks is to forecast the

future behavior of a system by leveraging observed data.1 Dynamical

systems provide a mathematical framework to describe the evolution

of natural phenomena across time and space, commonly represented

using differential equations. Solving these equations allows predic-

tions about the future state of dynamical systems. Understanding

complex physical dynamics across various spatial and temporal scales

poses a significant research challenge, garnering attention from

numerous scholars and having practical implications.2–6

Prediction in dynamical systems primarily relies on creating

models derived from first principles. However, due to incomplete

knowledge, these models based on physical laws often over-

simplify or misrepresent the underlying structure of dynamical

systems.7 As a result, they tend to exhibit high biases and modeling

errors that cannot be rectified by optimizing a few parameters.

Consequently, it becomes essential to employ dynamical system

learning methods that can accurately identify valid dynamic

models based on observed trajectories. These methods play a

crucial role in the analysis, simulation, and control of dynamic

systems.8–10
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Dynamical systems learning methods can be broadly classified

into two categories: purely data‐driven methods and physics‐guided

machine learning methods.11 The availability of experimental data has

led to the increasing popularity of purely data‐driven methods, which

utilize forward or backward models to fit the training data without

requiring extensive involvement in model design or the derivation of

learning and inference processes.12–15 Among purely data‐driven

methods, neural networks have emerged as the dominant technology

due to their exceptional ability to efficiently capture high‐dimensional

spatiotemporal dynamics from large data sets. One notable method in

this category is the sparse identification of nonlinear dynamics

(SINDy), which represents dynamic nonlinear differential equations as

linear combinations of nonlinear candidate functions and approx-

imates the model through sparse regression.16 However, SINDy's

reliance on numerical differentiation renders it sensitive to data

noise, particularly when higher‐order derivatives are involved. To

mitigate this issue, researchers have developed alternative methods,

such as integral identification17 and weak form identification.18 Deep

learning architectures offer highly expressive models for function

approximation and have demonstrated success in various scenar-

ios.19–21 Nonetheless, these models often exhibit a bias toward cer-

tain dynamic representations that do not strictly enforce the system's

symmetries and conservation laws. Consequently, their generaliza-

tion ability suffers, leading to physically implausible outcomes when

applied to new, unseen states. This characteristic also contributes to

their high variance and challenges in interpretation.22 Moreover,

training these models typically necessitates substantial data sets and

lengthy computation times, rendering them impractical for many real‐

world applications. Thus, it is imperative to develop data‐driven

methods that yield physically plausible results.23–26

Physics‐guided machine learning methods have emerged as a

hybrid method that integrates the principles of physics with deep

learning architectures. This novel method incorporates the physical

constraints and geometric properties of the underlying system during

the design and learning processes of neural networks. By leveraging

the function approximation capabilities of neural networks, existing

knowledge of the system's physics can be incorporated into the

construction of physically constrained neural networks, leading to

improved design, efficiency, and generalization capabilities.27 In

recent years, physically informed neural networks (PINNs) have been

introduced as a means to incorporate the underlying physics during

the training process and enhance desired system properties,

addressing the limitations of classical neural networks.28 For instance,

Chen et al.29 developed neural ordinary differential equations (Node)

to uncover hidden ordinary differential equations (ODEs) from

discrete data. However, these models often fail to preserve system

energy and exhibit poor generalization capabilities.

To address these limitations, researchers have explored integrat-

ing physical principles, such as differential equations and symmetries,

into deep neural networks (DNNs) as constraints.30,31 Lutter et al.12

proposed deep Lagrangian networks (DeLaNs), which employ two

deep networks to model rigid body dynamics by parameterizing

kinetic and potential energies. This formulation ensures the

preservation of system energy, leading to superior long‐term

prediction and control performance. Greydanus et al.32 introduced

Hamiltonian neural networks (HNNs), followed by Cranmer et al.33,

who proposed Lagrangian neural networks (LNNs). Both approaches

model the system holistically, regressing central quantities such as

Lagrangian or Hamiltonian quantities to represent the system's

dynamics and maintain physical properties like energy conservation

and symmetry. To explicitly enforce constraints and simplify the

learning problem, Finzi et al.34 presented constrained Hamiltonian

neural networks (CHNNs) and constrained Lagrangian neural net-

works (CLNNs). These frameworks embed the system in a Cartesian

coordinate system and leverage Lagrange multipliers to explicitly

enforce the constraints. As a result, they achieve simplification of the

learning problem. Lu et al.35 introduced modular Lagrangian networks

(ModLaNets), which employ Euler Lagrangian equations to indepen-

dently model system elements. This approach demonstrates im-

proved performance in multibody tasks. Moreover, Gruver et al.36

proposed mechanics neural networks (MechanicsNNs), utilizing an

induction bias to deconstruct the HNN model and enhance

computational efficiency. These models aim to strike a balance

between accuracy and computational cost. However, these methods

do not fully consider the impact of rigid conditions on accuracy,

necessitating further research.

Through an in‐depth exploration of the intrinsic dynamic properties

inherent in multibody systems, a comprehensive understanding of their

behavior in both scientific research and engineering applications can be

achieved. This, in turn, equips us with indispensable tools for predicting

and managing system behavior, thereby facilitating the resolution of

critical problems. The dynamic modeling and prediction of multiphysics

and multiscale systems present ongoing scientific challenges, as under-

scored by Karniadakis et al.37 It is imperative to acknowledge that these

systems often manifest rigid characteristics that exert a significant impact

on the learning process. This effect becomes particularly pronounced in

scenarios where parameters of system components undergo substantial

changes or in the convergence of slow variables characterized by

extensive ranges of motion and fast variables involving elastic deforma-

tions. As a result, neural network methods face limitations in addressing

the inherent complexities of specific multibody dynamics equations.

Given these constraints and drawing upon existing research findings, we

posit a novel approach grounded in multiscale differential‐algebraic

neural networks (MDANN). Our method employs a system of

differential‐algebraic equations (DAE) with constraints explicitly enforced

using Lagrange multipliers. This approach facilitates the learning of

Lagrangian quantities, contributing to a more nuanced understanding of

the system dynamics. Furthermore, the effectiveness of our proposed

method is demonstrated through its application in a dynamically

controlled environment. We introduce a multiscale module that

integrates information from different frequencies, thereby enabling the

learning of subprocesses with notable speed variations within the

system. We conducted experimental validation of our proposed method,

investigating coupled pendulum systems and double pendulum systems.

The outcomes of these experiments provide compelling evidence

substantiating the efficacy of our approach in acquiring a profound
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understanding of dynamic systems. Additionally, we extend the

application of our method to scalable structures, leveraging it to enhance

precision in determining control forces. The results obtained from these

applications distinctly showcase the robustness of our approach,

affirming its capability to refine control strategies for dynamic systems.

The rest of the paper is organized as follows. Section 2 provides

essential background knowledge to facilitate a better understanding of

the subsequent discussions. Section 3 presents the MDANN method

along with the technical implementation details. Section 4 showcases a

series of numerical experiments. The paper concludes in Section 5.

2 | LEARNING DYNAMICS

The standard frameworks for Hamiltonian and Lagrangian dynamics

are typically presented as sets of first‐ and second‐order ODE,

respectively. In 2018, Chen et al.29 proposed Node method, a

continuous DNN‐based approach that utilizes neural networks to

represent the time‐continuous dynamics of hidden states.

The Node method models the time evolution of a hidden unit as

a constant neural differential equation, as shown in Equation (1):

xf t t θ= ( ( ), , ),
x

t

d

d
(1)

where t represents time, x t( ) is a continuous representation of the

hidden state, and θ refers to the network weights and biases. The

evolution function xf t t θ( ( ), , ), parameterized by the neural network,

describes the dynamics of the hidden state over time. By solving the

initial value problem (IVP) using the initial conditions x t( )0 , the hidden

state x t( )1 at the next moment is obtained. Therefore, the time

evolution of the state x t( ) can be represented as a time integral, as

shown in Equation (2):

∫x x x

x

t t f t t θ t

t f t t θ

( ) = ( ) + ( ( ), , )d

= ODESolve ( ( ), , , , ),

t

t

1 0

0 0 1

0

1

(2)

where ODESolve is an ODE numerical solver. To improve memory

utilization efficiency, the concomitant sensitivity method is used

during backpropagation.29 Furthermore, the Node method allows for

the incorporation of prior knowledge of physical principles into the

network, enabling the parameterization of unknown physical quanti-

ties in the dynamics, such as mass, potential energy, Lagrangian, and

Hamiltonian quantities.

3 | PROPOSED METHOD

This section introduces our proposed MDANN method. The method

comprises two key modules: the Lagrangian mechanics module and

the multiscale module. The Lagrangian mechanics module facilitates

the learning of Lagrangian quantities by employing a system of DAE

with explicit constraints. On the other hand, the multiscale module

utilizes radial scaling to transform high‐frequency components into

low‐frequency components, thereby enabling the learning of physical

processes at various frequencies within Lagrangian quantities.

3.1 | Lagrangian mechanics module

The utilization of Lagrangian quantities to ensure energy conservation

in a system has proven invaluable for comprehensively understanding

the underlying physical processes.7 By explicitly incorporating con-

straints, the learning of Lagrangian quantities is further enhanced,

leading to improved data efficiency and prediction accuracy.

In this module, we employ the Lagrange multiplier method, which

utilizes a system of DAE to explicitly handle constraints and obtain

the Lagrangian quantities of the system. The module consists of two

key components: a differential component and an algebraic compo-

nent. The differential component focuses on the ODE of motion,

which describes the temporal evolution of an object or system. It

allows for the conservation of the Lagrangian quantity of the system.

By considering variables such as position, velocity, and acceleration,

we can infer the dynamic behavior over time. Differential equations

provide the fundamental framework for describing the motion of an

object or system. On the other hand, the algebraic component

involves the algebraic constraint equations that capture the relation-

ships within the system, including binding forces and other

constraints. These equations effectively represent the interactions

and constraints among the different components. Figure 1 depicts a

schematic diagram of the Lagrangian mechanics module.

The system is characterized by a set of Cartesian coordinates q t( )

that represent the configuration of a rigid body at time t. The

Lagrangian function of the system, defined in Equation (3), is a

fundamental component of our proposed methodology:

q q q q qL t t T t t V t( ( ), ˙ ( )) = ( ( ), ˙ ( )) − ( ( )), (3)

where T represents the kinetic energy of the system, and V

represents its potential energy. To efficiently learn Lagrangian

quantities of physical systems, we parameterize the kinetic and

potential energy using two separate neural networks. We leverage

Lagrangian quantities as prior knowledge in this process.

In the context of mechanical systems, the kinetic energy T of the

system is determined by Equation (4):

q q q M q qT t t t t t( ( ), ˙ ( )) =
1

2
˙ ( ) ( , ) ˙ ( ),T (4)

where the generalized mass matrix  M q t L( , ) = q q˙ ˙
T , which is a

constant matrix in Cartesian coordinates and does not depend on the

state q t( ). Therefore, learning the constant values of this matrix using

a neural network can simplify the form of the Lagrangian function.

The dynamics of a multibody system can be expressed using the DAE

as shown in Equation (5):




M q q Φ λ F q q

Φ q

t t t t

t

¨

0

( , ) + = (˙ ( ), ( ), )

( , ) =
.

q
T

(5)
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The above equation describes the system using the generalized

velocity q̇, the Lagrange multiplier λ, the constraint equation Φ for

the position coordinate array q, the generalized force matrix F , and

the Jacobi matrix of the constraint equation, Φq. To obtain the

velocity constraint equation Φ̇ and the acceleration constraint

equation Φ̈ for the system, we need to solve the constraint equation

Φ q t( , ) for the first and second‐order derivatives with respect to time

t, respectively. The velocity constraint equation, as shown in

Equation (6), is given by

Φ q Φ q q Φ qt t t 0˙ ( , ) = ( , ) ˙ + ( , ) = .q t
(6)

Similarly, the acceleration constraint equation, as shown in

Equation (7), is given by

Φ q Φ q q q Φ q q Φ q q

Φ q q Φ q

t t t t

t t 0

( , ) = ( ( , ) ˙) + ( , ) + ( , ) ˙

+  ( , ) ˙ + ( , ) = .

q q q q

q

t

t tt

.. .. ..

(7)

These equations result in the system of index‐1 DAE, given by

Equation (8):

⊤






























M q Φ

Φ

q

λ

F q q

Φ q q

t t t t

0

( , ) ¨
=

(˙ ( ), ( ), )

−( ˙) ˙
,

q

q q q
(8)

where the generalized force array  F L V= = −q q . Equation (8) can

be reformulated as Equation (9), which explicitly expresses the

acceleration of the generalized coordinates q t( ) and the Lagrange

multipliers λ as a function of the other variables. This reformulation

can be particularly helpful in the numerical integration of the DAE.































q

λ

M q Φ

Φ

F q q

Φ q q
t t t t t

0

( )
=

( , ) (˙ ( ), ( ), )

−( ˙) ˙
.

q

q q q

.. T −1

(9)

3.2 | Multiscale module

Dynamical systems often exhibit multifrequency phenomena, partic-

ularly when their components vary significantly in parameters or

involve a combination of slow variables with a wide range of motion

and fast variables with elastic deformation. Consequently, the

solutions of such systems comprise multiple frequency components

that are superimposed on each other. DNNs excel at processing data

with low‐frequency content, as supported by the frequency principle

(F‐principle).38 DNNs can rapidly learn the low‐frequency content of

data and achieve commendable generalization accuracy. However,

neural networks often struggle when confronted with high‐frequency

data, leading to reduced convergence or even nonconvergence of the

learning method. In the domain of multibody dynamics, the learning

of dynamical systems poses challenges due to the frequency

disparities between the motions of objects within the system.

To tackle this challenge, we employ a multiscale structure to

preprocess the input data and extract frequency features that are

better suited for learning. Specifically, we adopt the multiscale structure

proposed by Liu39 This approach has demonstrated its efficacy in

facilitating the rapid learning of high‐frequency components and

expediting the solution of partial differential equations in comparison

to traditional fully connected network structures. The multiscale

module employs radial scaling to convert solution content from higher

frequency ranges to lower ones, thereby rendering the solution content

easier to learn. The module takes the state variable q as input and

produces the potential energy V of the system as output. A schematic

diagram representation of the module is depicted in Figure 2.

F IGURE 1 Schematic diagram of Lagrangian mechanics module.

F IGURE 2 Schematic diagram of multiscale module.
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In our multiscale module, we utilize the linear combination

property of energy to establish the potential energy of the system.35

The potential energy comprises two main components: the potential

energy, denoted as Vi , between the elements and the environment, and

the potential energy, denoted as Vij, between the elements themselves.

The expression for the potential energy is presented in Equation (10).

∑ ∑q q q qV c V
c
V( ) = ( ) +

2
( , ),

i
i i i

i j i j

ij
ij i j

, , ≠
(10)

where the weight parameters of Vi and Vij are denoted by ci and cij,

respectively. Additionally, Vij is symmetric, that is, Vij = Vji. To obtain

consistent frequency accuracy solutions, the position coordinates q are

segmented into different frequency ranges using radial scaling. This

segmentation allows for the utilization of m parallel subneural networks,

denoted as Vθ, which are responsible for calculating the potential energy

within each frequency range. Finally, we calculate the potential energy

using a weighted summation, as shown in Equation (11).

∑ ∑

∑ ∑

q q

q q

V c V α

c
V α α

( ) = ( )

+
2

( , ),

i
i
k

m

i
θ

k i

i j i j

ij

k

m

ij
θ

k i k j

=1

, , ≠ =1

k

k

(11)

where αk and θk denote the scaling factor and network parameters of

the k‐th subnetwork, respectively. Additionally, we use residual

connections to address the gradient vanishing issue.

During the training process, our model takes the system's states

q q( , ˙) as inputs and predicts the corresponding states q̈. To update the

network parameters, we utilize the L2 loss function, which is

expressed in Equation (12):

∑ q q
N

=
1

(¨ − ¨̂ ) ,
i

N

i i
=1

2 (12)

where q̈ and q̈̂ represent the true and predicted system states,

respectively.N represents the number of samples in the data set. This

loss function quantifies the discrepancy between the predicted and

actual states, guiding the adjustment of network parameters during

the training process.

4 | EXPERIMENTS

The experiments reported were conducted in the college laboratory

of Qingdao University, utilizing existing infrastructure. The experi-

mental setup comprised a server equipped with aTesla P100 graphics

card, an Intel Xeon CPU, and 13 GB of RAM, running on an Ubuntu

20.04 operating system. The algorithm was implemented using

Python 3.9 and the PyTorch deep learning framework, with PyCharm

as the integrated development environment.

To assess the effectiveness of the proposed method, we

implemented it in three different systems: a double pendulum system,

a coupled pendulum system, and a scissor‐type deployable mast

system. In investigating the double pendulum system, we utilized

dynamic equations to build a comprehensive data set, comprising both

a training set and a test set. The training set encompasses 100 samples

with distinct initial conditions, and their evolution processes within the

time range t = [0, 5] are meticulously documented. For robust model

training, we intentionally selected mutually independent initial condi-

tions to capture the intricacies and diversity of the system's behavior.

The test set consists of 100 samples with different initial conditions and

no overlap with the training set samples. Their evolution processes

within the time range t = [0, 15] are recorded. The design of this data

set aims to fully elucidate the generalization performance of the

adopted methods in response to dynamic changes in the system. In

the case of the coupled pendulum system, we applied the same

methodology for generating both the training and test sets as employed

in the double pendulum system, ensuring consistency throughout the

study. While investigating the scissor‐type deployable mast system, we

calculated the expected trajectories of the system in accordance with

mission design requirements. This process aimed to generate the

essential data sets necessary for training neural networks. For model

optimization, we applied the Adam algorithm, initializing weights from a

normal distribution. TheTanh activation function was employed in this

process. The configuration for multiscale frequency segments involved

setting the number to 5, with scaling factors specified as {1, 2, 4, 8, 16}.

To solve the dynamical system, we employed the dopri5 ODE solver

with a time step of 0.01 s and used a relative tolerance error of 10−6

along with an absolute tolerance error of 10−9. These choices were

made for their accuracy and stability.

We employed the mean squared error (MSE) as an evaluation

metric to assess the performance of the dynamical system learning

method.34 The MSE was utilized to assess the performance of the

method using different error metrics, namely the position error and

the energy violation error. The position error, denoted as MSEq, is

calculated according to Equation (13). This metric quantifies the

deviation between the predicted and actual system states. Similarly,

the energy violation error, denoted as MSEE , is determined using

Equation (14). This error metric measures the extent to which the

method violates the energy constraints of the system.

∑ ∑q q q q
N N

MSE =
1

( − ˆ ) +
1

(˙ − ˙̂ ) ,q
i

N

i i
i

N

i i
=1

2

=1

2 (13)

∑ q q q q
N

E EMSE =
1

( ( , ˙ ) − ( ˆ , ˙̂ )) ,E
i

N

i i i i
=1

2 (14)

where N stands for the number of samples in the data set. The

vectors q and q̇ correspond to the true state, while q̂ and q̇̂ denote

the predicted state. The function E ( ) represents the total energy

associated with the system.

4.1 | Coupled pendulum system

The coupled pendulum system is composed of three pendulums

interconnected by two elastic springs. The system also experiences
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stiffness problems when the springs are deformed elastically. The

Lagrangian function is defined by Equation (15).

 

∑ ∑

∑

x x x

x x

L m m g

k r

=
1

2
˙ ˙ −

+
1

2
( − − ) ,

i
i i i

i
i i

i
i i i

=1

3
T

=1

3
(2)

=2

3

−1 −1
2

(15)

where r and k represent the undeformed length and stiffness

coefficient of the spring, respectively. For our experiments, we

set l l l m m m r r= = = 1 m, = 100 kg, = = 1 kg, = = 1 m1 2 3 1 2 3 1 2 , and

k = 10N∕m.

When assessing the efficacy of our method within the context of

a coupled pendulum system, the evaluation of performance involves

the quantification of the MSE pertaining to the predicted position

and energy of the pendulum. The trajectory of a coupled pendulum

system is visually depicted in Figure 3, providing valuable insights into

the underlying dynamics. Notably, a comparative analysis with the

reference solution elucidates discernible distinctions between the

Node method and the MechanicsNN method, whereas the CLNN and

MDANN methods exhibit a higher level of concordance.

Table 1 provides a thorough performance evaluation, demon-

strating that the proposed method attains MSEq of 3.214e−2 and

MSEE of 2.590e−3. To further elucidate these findings, Figure 4

illustrates the temporal evolution of errors, offering a dynamic

perspective on the system's behavior. Notably, as the system evolves,

the inherent complexity of its dynamics gradually intensifies, resulting

in an escalating relative error. Nevertheless, the proposed method

consistently outperforms alternative approaches, affirming its effec-

tiveness in comprehensively capturing and simulating the behavior of

rigid systems undergoing elastic deformation.

4.2 | Double pendulum system

The double pendulum system is composed of two small balls

connected by massless rods. When the masses of the two pendulums

differ significantly, the system experiences a stiffness problem. Its

Lagrangian function is defined by Equation (16).

F IGURE 3 Comparison of results for coupled pendulum system: (A) ground truth, (B) Node, (C) MechanicsNN, (D) constrained Lagrangian
neural networks, (E) multiscale differential‐algebraic neural network.

TABLE 1 MSE comparison of results for coupled pendulum
system.

Method MSEq MSEE

Node 2.353e−01 ± 1.063e−01 6.922e+02 ± 6.891e+02

MechanicsNN 4.727e−02 ± 7.575e−03 1.306e+01 ± 8.625e+00

CLNN 4.343e−02 ± 8.331e−03 2.490e+00 ± 1.426e+00

MDANN 3.214e−02 ± 1.132e−02 2.590e−02 ± 1.366e−02

Abbreviations: CLNN, constrained Lagrangian neural networks;

MDANN, multiscale differential‐algebraic neural network; MSE, mean
squared error.

F IGURE 4 Accumulated mean squared error (MSE) over time for
coupled pendulum system: (A) MSE of position, (B) MSE of energy.



 


∑L m x x m gx=

1

2
˙ ˙ − ,

i
i i i i i

=1

2
T (2) (16)

where mi represents the mass of the i‐th object, g represents the

acceleration of gravity in the x (2) direction, and x (2) represents

the position of the object in that direction. Here, we used

l l m= = 1m, = 1 kg1 2 1 , and m = 100 kg2 .

The efficacy of the proposed method is assessed through its

application to a double pendulum system. The obtained results are
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presented in Table 2. The MSE for the proposed method's position is

9.638e−02, while the MSE for energy is 5.091e−01. In contrast, both

Node and MechanicsNN exhibit signs of overfitting, underscoring

their limitations in accurately capturing the evolution equations of

the system, particularly in the face of substantial changes in mass.

Remarkably, the proposed method outperforms CLNN in terms of

both MSE metrics, highlighting its superior performance.

The trajectory of the double pendulum system is depicted in

Figure 5, illustrating the precision of our method in predicting the system

trajectory while adhering to fundamental physical principles. Figure 6

illustrates the temporal accumulation of errors, further emphasizing the

superiority of the proposed method over alternative methods. Experi-

mental findings substantiate the effectiveness of the proposed

methodology in acquiring knowledge of rigid system dynamics.

We conducted an experiment to examine the impact of stiffness on

the learning ability of a dynamical system using a double pendulum

system. The stiffness of the system is determined by the disparity in

speed between its subprocesses. To manipulate the stiffness, we

adjusted the mass parameterm2 with values of 100, 200, 300, and 400,

thereby influencing the stiffness of the system. As the mass difference

increases, so does the velocity difference between the subprocesses.

The box plot in Figure 7 illustrates the variation inMSEE associated with

the mass parameter. The results indicate a discernible upward trend in

the energy error as the system rigidity gradually intensifies. This

escalation contributes to heightened complexity and poses challenges to

the system's learning process. Nevertheless, the proposed method

yields superior results in energy retention compared to other methods

for learning dynamical systems. In conclusion, the proposed method

effectively learns dynamical systems even under rigid conditions.

4.3 | Scissor‐type deployable mast system

The proposed method is subsequently applied in the context of a scissor‐

type deployable mast system.40 The scissor‐type deployable mast

belongs to a category of structures with a negative Poisson's ratio that

offers significant utility in the aerospace domain. These units possess a

distinctive capability, enabling seamless transitions between two distinct

states: a compact, folded configuration during ground handling and

launch and the ability to dynamically expand upon reaching a designated

orbital position. The dynamic expansion phase of this process carries the

TABLE 2 MSE comparison of results for double pendulum
system.

Method MSEq MSEE

Node 7.777e+01 ± 3.742e+01 7.077e+05 ± 3.868e+05

MechanicsNN 7.132e+00 ± 1.315e+01 1.970e+05 ± 4.908e+05

CLNN 1.345e−01 ± 2.838e−02 5.453e+01 ± 4.340e+01

MDANN 9.638e−02 ± 6.056e−02 5.091e−01 ± 5.553e−01

Abbreviations: CLNN, constrained Lagrangian neural networks; MDANN,
multiscale differential‐algebraic neural network; MSE, mean squared error.

F IGURE 5 Comparison of results for double pendulum system: (A) ground truth, (B) Node, (C) MechanicsNN, (D) constrained Lagrangian
neural networks, (E) multiscale differential‐algebraic neural network.

F IGURE 6 Accumulated mean squared error (MSE) over time for
double pendulum system: (A) MSE of position, (B) MSE of energy.

F IGURE 7 Comparison of energy results for double pendulum
systems with different masses.
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potential for failure. Thus, it is necessary to conduct an analysis of the

expanding process of scissor‐type deployable masts through dynamic

simulations and optimize the control forces required during the design

phase. In this context, the proposed MDANN method is employed to

optimize the control forces, ensuring a smooth and expeditious

expansion of the scissor‐type deployable mast.

The system is composed of multiple expandable units. Each

expandable unit primarily consists of scissor hinges, orthogonal

double‐joint components, and sliding components configured in a

rational manner to provide it with the capability to fold and expand,

as show in Figure 8. Each side of the unit incorporates a scissor hinge,

while the upper and lower ends are connected by orthogonal

double‐rotary joints and sliding joint components. The system bears a

certain load at its top. Applying a driving force, the bottom

orthogonal double‐joint actuators move along the diagonals of the

bottom quadrilateral, thereby achieving the folding and expanding

function of the unit. Throughout this process, the length of the

scissor rods remains constant, while the transverse rods adjust their

length through the sliding components. In the fully extended state,

the angle between the scissor rods of the scissor hinge is 90°.

When modeling the system using Cartesian coordinates, the

state variables can be represented as Equation (17).









q x y z x y z x y z

x y z x y z

x y z x y z

= …

,

n n n n n n

n n n n n n

1 1 1 2 2 2 3 3 3

4 +1 4 +1 4 +1 4 +2 4 +2 4 +2

4 +3 4 +3 4 +3 4 +4 4 +4 4 +4

T

(17)

where n representing the number of deployable units. The general-

ized force vector, represented as F , is defined in Equation (18).

⊤










F u u u u

u u u u

r r

r r

= −
2

2

2

2
0 −

2

2
−

2

2
0

2

2
−

2

2
0

2

2

2

2
0

0 0 0 … 0 0 0
0 0 − 0 0 −

0 0 − 0 0 − ,

(18)

where u denotes the control force applied to the system, while the

load, represented as r , is maintained at a constant value of 5 N. The

dimension of the generalized force vector F is n3(4 + 4) × 1. In theF IGURE 8 Schematic diagram of expandable unit.

F IGURE 9 The results of the multiscale differential‐algebraic neural network method for scissor‐type deployable mast system: (A) control
force, (B) deployment position, (C) deployment speed, (D) constraints, (E) velocity constraints, and (F) acceleration constraints.
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context of a scissor‐type deployable mast system, it is pertinent to

note that their generalized coordinates are not mutually independent

during the expanding process. Consequently, they must adhere to

certain constraint conditions. In our analysis, we have taken into

account constraints associated with both the rod length constraints

Φ1 and position constraints Φ2. The constraint equations for the

system can be expressed as Equation (19).







Φ

Φ

Φ
0= = ,

1

2

(19)

where the dimensionality of the constraint equation Φ is

n(10 + 19 ) × 1. In consideration of the quality parameters, we have

defined the density of the mast as 3000 kg∕m3, the cross‐sectional

area as 0.03 m2, and the length of the shear rod as 1.6 m. The

dimension of the mass matrix M is given by n n3(4 + 4) × 3(4 + 4). In

the system's initial state, the shear rod maintains a 10° inclination in a

folded configuration. In this experiment, we have configured the

number of expandable units in the system to be n = 5.

Our primary objective is to optimize the control force u to ensure

a constant ascent rate of 0.3 m∕s for the uppermost node of the

scissor‐type expandable mast. The outcomes of this optimization

procedure are illustrated in Figure 9A, which demonstrates a gradual

reduction in the control force over time.

To assess the effectiveness of our method in optimizing the

control force, we directed our primary focus toward the nodes

positioned identically within a specific section of the mast structure.

Figure 9B,C illustrates the displacement variations and velocity

fluctuations observed at the designated nodes. The experimental

findings demonstrate the critical importance of optimizing control

forces to ensure consistent and uniform motion across all units within

the structure. Notably, we maintained a consistent velocity of

approximately 0.3 m∕s for the uppermost node, facilitating a

seamless and expeditious deployment of the mast.

Moreover, as shown in Figure 9D–F, the system effectively

maintains stringent constraints, velocity constraints, and acceleration

constraints within precise and highly accurate ranges. In Figure 10,

we observe the deployment of the scissor‐type deployable mast,

transitioning from its initial folded configuration at t = 0 s to

achieving full extension by t = 15.88 s.

Furthermore, we conducted a comparative study to investigate

the impact of varying numbers of units on the outcomes. The results

are presented in Table 3, illustrating scenarios with 5, 10, and 15

units, respectively. It is evident that as the number of expandable

units increases, the maximum height of the structure also rises.

Additionally, the proposed method consistently maintains a relatively

low maximum error in target speed, hovering around 1e−5.

Moreover, the constraints demonstrate stable performance, remain-

ing within a moderate range. To simulate scenarios involving a

greater number of scalable units, we utilized Cinema 4D simulation

software, as depicted in Figure 11. The experimental results

unmistakably indicate that the proposed method effectively

F IGURE 10 Schematic diagram of scissor‐type deployable mast
system: (A) folded state, (B) extended state.

TABLE 3 Comparison of results for scissor‐type deployable mast systems with different numbers of units.

The number
of units

The maximum height
of the expanded state

The maximum error
of the target speed

The maximum error of
the constraints

The maximum error of
the velocity constraints

The maximum error of the
acceleration constraints

5 5.65 9.9987e−06 8.4818e−08 9.8351e−09 4.9397e−08

10 11.31 9.9788e−06 9.2404e−07 2.0118e−07 1.4846e−06

15 16.97 9.9971e−06 4.2815e−07 1.3768e−07 2.7426e−05

F IGURE 11 Schematic representation of scissor‐type deployable
mast system.
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optimizes the control force of the system, thereby achieving optimal

control of the expansion process.

5 | CONCLUSION

Dynamical system learning is a challenging research area with significant

practical applications. In this paper, we propose a novel MDANN method

for addressing the challenges of learning dynamic systems, particularly

those characterized by rigidity. Our method explicitly enforces constraints

using a system of DAE, enabling better learning of Lagrangian quantities.

Additionally, we introduce a multiscale structure to mitigate the problem

of overlapping frequency components within physical processes.

Subsequently, we apply the proposed method to address the challenges

posed by the learning of a double pendulum system, a coupled pendulum

system, and the optimization of control forces for a scissor‐type

deployable mast system. While our method exhibits notable enhance-

ments in terms of evaluation metrics, there remains ample scope for

performance enhancement, especially in rigid conditions. Future research

endeavors should prioritize issues such as elevating the precision of

dynamical system learning and unraveling the intricate relationship

between sampling step size and learning accuracy.
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